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Abstract: This paper presents a novel approach to retrieve indoor structures from raster images of complicated floor plans. We extract the
building elements in the floor plan and process them into a vectorized form to provide indoor layout information. Unlike conventional
approaches, the proposed model is robust when recognizing rooms and openings surrounded by obscuring patterns, including superimposed
graphics and irregular notation. To this end, we integrate various floor plan formats into a unified style using conditional generative ad-
versarial networks prior to vectorization. This style-transferred plan that follows the unified style represents the room structure intuitively and
is readily vectorized due to its concise expression. Raster-to-vector conversion is conducted with a combinatorial optimization in junction
units of the layout. The experimental results demonstrate that when implemented with complex drawings, our model is comparable to existing
methods in the detection and recognition of rooms and provides a much better score in one-to-one matches. DOI: 10.1061/(ASCE)CP.1943-
5487.0000942. © 2020 American Society of Civil Engineers.
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Introduction

Recent advances in information technology have made it possible
to acquire and process information within indoor environments,
thus allowing for existing services to be expanded for indoor use
(Liu et al. 2017b; May and Williams 2017). This has had a positive
impact on facilities management (Yalcinkaya and Singh 2014), in-
door localization (Rusli et al. 2016; Xu et al. 2018; Wei and Akinci
2019), and indoor data models (Volk et al. 2014; Kang and Li 2017;
Konde et al. 2018). Above all, it has increased demand to construct
fundamental databases of indoor information.

Among various approaches to generating 3D models of build-
ings (Gimenez et al. 2015), including those that use 3D laser
scanning (Tang et al. 2010; Dimitrov and Golparvar-Fard 2015),
CAD plans (Chen et al. 2008), architectural sketches (Fernández-
Pacheco et al. 2012), and mobile applications (Sankar and Seitz
2012; Froehlich et al. 2017), this paper makes use of floor plans
because they provide the most basic source of information for
existing buildings. When approaches using floor plans or scanned
paper plans are automated, models of indoor spaces can be created
practically and efficiently because such plans are relatively inex-
pensive and easy to acquire. Due to the high accessibility of floor

plans, Google Indoor Maps and OpenLevelUp have allowed users
to build indoor maps using their own floor plans, but not with much
detail. As such, automatic floor plan analysis is needed to make use
of the practical availability of floor plans that exist in various for-
mats. However, this is a challenging problem in a situation where
(1) notation of different floor plans varies significantly according to
the ordering institutions or the design offices, and (2) floor plans
archived as raster images are usually characterized by complex,
fuzzy architectural drawings.

Researchers in floor plan analysis have generated building mod-
els from scanned floor plans. They aim to convert raster images into
vector models, and conventional approaches have set up rules based
on local features within specific plans; the rules are thus highly
dependent on floor plan format (Macé et al. 2010; Ahmed et al.
2011; Gimenez et al. 2015). To reduce the dependency on specific
formats while addressing a larger variety of formats, researchers (de
las Heras et al. 2014) have applied learning algorithms that are
trained on the geometry of the patterns directly from the datasets
(Dodge et al. 2017; Liu et al. 2017a; Jang et al. 2020). However,
floor plan analysis has still been confined to a few concise formats
that are simplified and abridged versions of architectural drawings.
In addition, there is a trend toward a learning-based approach, and
researchers tend to target simpler formats due to the ease of col-
lection and labeling, even with an inability to address complicated
formats.

Our goal is to extend the applicability of floor plan analysis to
more complex and diverse formats (Fig. 1). We do so by recon-
structing building models that represent room structure in a vector
format from an EAIS dataset (Jang et al. 2020), which is composed
of complicated, diverse architectural drawings. Wall and opening
primitives can be reliably obtained from overlapping graphics
and irregular patterns with our novel approach that converts multi-
ple formats of floor plans into a unified format using a conditional
generative adversarial network prior to vectorization. In the vecto-
rization phase, we extract junction candidates by means of deep
networks and find an optimal combination of the junctions and their
connections based on combinatorial optimization. By confining
the objective of the deep learning networks to style transfer rather
than to extract geometric details, the deep learning networks can

1Reserch Fellow, Institute of Construction and Environmental Engineer-
ing, Seoul National Univ., Seoul 08826, Korea. ORCID: https://orcid.org
/0000-0002-0774-6791. Email: syoi@snu.ac.kr

2Ph.D. Candidate, Dept. of Civil and Environmental Engineering, Seoul
National Univ., Seoul 08826, Korea. ORCID: https://orcid.org/0000-0002
-6059-4731. Email: seula90@snu.ac.kr

3Lecturer, Dept. of Civil and Environmental Engineering, Seoul
National Univ., Seoul 08826, Korea. ORCID: https://orcid.org/0000
-0003-4894-6906. Email: urbanistar@snu.ac.kr

4Professor, Dept. of Civil and Environmental Engineering, Seoul
National Univ., Seoul 08826, Korea (corresponding author). Email:
kiyun@snu.ac.kr

Note. This manuscript was submitted on March 18, 2020; approved on
August 6, 2020; published online on December 17, 2020. Discussion per-
iod open until May 17, 2021; separate discussions must be submitted for
individual papers. This paper is part of the Journal of Computing in Civil
Engineering, © ASCE, ISSN 0887-3801.

© ASCE 04020066-1 J. Comput. Civ. Eng.

 J. Comput. Civ. Eng., 2021, 35(2): 04020066 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

SE
O

U
L

 N
A

T
IO

N
A

L
 U

N
IV

E
R

SI
T

Y
 L

IB
 o

n 
12

/1
7/

20
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

https://doi.org/10.1061/(ASCE)CP.1943-5487.0000942
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000942
https://orcid.org/0000-0002-0774-6791
https://orcid.org/0000-0002-0774-6791
mailto:syoi@snu.ac.kr
https://orcid.org/0000-0002-6059-4731
https://orcid.org/0000-0002-6059-4731
mailto:seula90@snu.ac.kr
https://orcid.org/0000-0003-4894-6906
https://orcid.org/0000-0003-4894-6906
mailto:urbanistar@snu.ac.kr
mailto:kiyun@snu.ac.kr
http://crossmark.crossref.org/dialog/?doi=10.1061%2F%28ASCE%29CP.1943-5487.0000942&domain=pdf&date_stamp=2020-12-17


recognize room structures, even from messy and ambiguous graph-
ics. This paper allows for floor plan analysis to be accomplished
with complex formats that were previously inaccessible and intro-
duces a pragmatic novel annotation framework that can be used for
deep learning.

Related Work

Research on floor plan analysis is specific to particular datasets
because existing algorithms commonly rely heavily on certain pat-
terns within floor plan notations. Thus, before reviewing relevant
studies, we examined public datasets (Table 1). In general, floor
plan datasets, except traditional CVC datasets, do not have a for-
mal, unified format; instead, there are various formats within a gen-
eral theme. This is because with the development of learning
algorithms, each dataset expanded the range of formats it contained
in order to increase the quantity. Each floor plan dataset has lim-
itations concerning either quantity or notation complexity, and re-
searchers opt to utilize the datasets that are suitable for their own
purposes.

For such datasets to be useful for floor plan analysis, there must
be pixel-wise annotations for objects such as walls, openings, and
rooms. However, there are few public datasets because it is difficult
for floor plans to be invariably labeled due to ambiguity in notation
and the need for high-level expertise for object recognition (Macé
et al. 2010; de las Heras et al. 2014). Even though several practical
tools have been developed to conveniently annotate floor plans
(Rendek et al. 2004; de las Heras et al. 2015), it is difficult to do
so because there is no way to guarantee the same annotations from
different annotators, especially for complicated floor plans.

Floor plan analysis is a combination of sequential processes that
generate building models by automatically extracting meaningful
information from rasterized floor plans. The overall procedures
for preprocessing, line detection, wall and room recognition, and
symbol recognition are well-organized (Gimenez et al. 2015). In
this paper, based on the viewpoint that floor plan analysis can be
applied universally through learning algorithms (de las Heras et al.
2014), we review the relevant studies in the flow from a rule-based
to a learning-based approach.

In general, the process of floor plan analysis can be categorized as
graphic separation, pattern recognition, and floor plan vectorization.
Graphic separation, as preprocessing for pattern recognition, extracts
essential graphic elements from floor plans. In pattern recognition,
building elements such as walls and openings are recognized by
graphic patterns—process is the core of the floor plan analysis that
researchers aim for. Floor plan vectorization is used in a narrow sense
in that building elements are converted into an intact vector form
with respect to buildings rather than simply changing the data format
to a vector. Table 2 summarizes the research that is widely referred to
in floor plan analysis.

Conventional floor plan analysis using a rule-based approach is
characterized by the use of specific geometric patterns in floor plan
notation for object recognition. Typically, preprocessing of separat-
ing graphic elements was carried out as a first step, and especially
in CVC, graphic elements were readily separated by distinguishing
between lines of different thicknesses. Then, (Macé et al. 2010)
extracted walls by searching for parallel contours of thick lines
based on Hough transform and detected rooms as convex regions
after recursive decomposition. To improve performance, (Ahmed
et al. 2011) found the contours of walls after subdividing the graph-
ics further into thick, medium, and thin lines. Also, to detect rooms,

Fig. 1. (Color) Our proposed method can reconstruct walls in areas with overlapping graphics or nonuniform patterns, thus allowing room structures
to be recovered even from complicated drawings: (a) input floor plan images and our results; (b) style-transferred plans; and (c) vectorized floor plans.
See Fig. 12 for the vector-graphics representation.
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gaps between the walls were closed by actively spotting doors and
windows by means of SURF, and empirical thresholds were addi-
tionally used for insufficient cases.

Gimenez et al. (2016) went one step further to floor plan vecto-
rization, the output of which was refined and imported into IFC
format. After separation of graphics using Tombre et al. (2002),
various types of building elements were detected based on struc-
tural rules designed in a form, like assigning the wall to two parallel
lines within a certain distance of each other. Finally, 3D building
models were generated by properly assembling the vectorized
building elements. Overall, these approaches using rule-based al-
gorithms depend heavily on notation and on empirical parameters,
and they perform well in specific formats but have limitations in
coping with others.

The learning-based approach, which directly learns geometric
patterns from floor plan datasets, has been applied to various floor
plan formats. In the early learning approach (de las Heras et al.
2014), graphic separation was required, followed by the coarse seg-
mentation of each object based on a bag of visual words. Then, the
segmented building elements were refined and vectorized in order

to detect room structures. However, because the model was trained
directly from the datasets, the analysis still had to be applied sep-
arately on data that used the four notations in CVC.

As deep learning is applied to floor plans analysis, the role of the
learning algorithms has expanded, and graphic separation can be
omitted with raw floor plan images used directly to train the mod-
els. Dodge et al. (2017) built models that coped with several for-
mats at once via deep networks, thus increasing the versatility of
floor plan analysis. The key was to detect walls using fully con-
volutional networks (Long et al. 2015) and deep learning networks
specialized in segmentation and to visualize them in 3D by extrud-
ing the raster outputs. The analysis targeted CVC and Rakuten da-
tasets, but for CVC, K-fold cross validation had to be used because
of the limited quantity of data. Zeng et al. (2019) further developed
such analysis and improved its performance by designing a network
architecture that referred to the room boundary as attention when
extracting rooms and their types. In addition, unlike in previous stud-
ies, the researchers targeted different types of floor plans including
walls of uneven thicknesses or curved walls, but they still did not
cover vectorization of the raster outputs in their scope.

Table 2. Representative research in floor plan analysis

Category Paper Datasets Graphic separation Pattern recognition Floor plan vectorization

Rule-based Macé et al. (2010) and
Ahmed et al. (2011)

CVC (partial) ∨ ∨ —

Gimenez et al. (2016) CVC (partial) ∨ ∨ ∨
Learning-based de las Heras et al. (2014) CVC ∨ ∨ —

Dodge et al. (2017) CVC/Rakuten — ∨ —
Zeng et al. (2019) Rent3D/Rakuten
Liu et al. (2017b) Rakuten — ∨ ∨
Jang et al. (2020) EAIS

Note: ∨ indicates whether the research covers each process.

Table 1. Floor plan datasets

Dataset (references) Annotation (quantity) Theme Property

CVC Walls, doors, windows,
rooms without type

Simplified architectural
drawings

• High-resolution architectural drawings
with uniform notations

(Macé et al. 2010; (122)
de las Heras et al. 2014)

• Mixture of four formats; but most are biased in
one format, BlackSet that expresses a wall with
thick black lines (more than 75%)

• Format diversity = very low (only 4)
• Notation complexity = low-medium
• Information amount = medium

Rakuten Walls, openings,
room types, icon types

Simplified real estate floor
plans including color

• RGB color that represents the type and boundaries
of the rooms

(Liu et al. 2017a) (815) • Simplified layouts mostly in a rectangular shape
with stereotyped symbol and icons

• Walls of uniform thickness and highlighted expressions
• Format diversity = medium
• Notation complexity = low
• Information amount = high

Rent3D Walls, opening,
room types

Simplified real
estate floor plans

• Relatively irregular layouts including round-shaped ones

(Liu et al. 2015;
Zeng et al. 2019)

(232)
• Walls with nonuniform thickness, but still highlighted
• Format diversity = medium
• Notation complexity = low
• Information amount = high

EAIS Walls, doors Architectural drawings • Various drawings including architectural, structure,
electrical, plumbing plans with different notations(Jang et al. 2020) (319)

• High complexity due to messy and overlapping graphics
• Walls with irregular notation and unclear boundaries
• Format diversity = very high
• Notation complexity = very high
• Information amount = low

© ASCE 04020066-3 J. Comput. Civ. Eng.
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In a learning-based approach, floor plan vectorization is generally
accomplished by refining and processing the output of pattern rec-
ognition based on learning models. To vectorize floor plans, Liu et al.
(2017a) extracted semantic information from basic geometric pat-
terns using ResNet (He et al. 2016) and generated candidates for
the junction and wall primitives. Then, they formulated integer
programming to find the optimal primitive pair that correctly repre-
sented an indoor structure and finally reconstructed the final building
models consisting of vectorized walls and openings. Even though
learning algorithms have been extended to floor plan vectorization,
their approach was specific to Rakuten data, which consist of an
abridged version of a floor plan expressed using color-coded infor-
mation and simplified walls with a uniform pattern. Jang et al. (2020)
also covered floor plan vectorization, specifically targeting an EAIS
dataset composed of complicated floor plans. Through segmentation
using deep networks, walls and doors were detected from various
complex formats of the drawings. Then, the extracted wall segments
were vectorized by means of skeletonizing and several postprocess-
ing tasks based on corners. For the door segments, the proper posi-
tion in a vectorized wall was searched and filled in with a line. By
targeting complicated floor plans, the researchers followed existing
methods using segmentation and contained ad-hoc processing and
heuristic parameters in the vectorization.

Overall, a learning-based approach, especially one based on
deep networks, has steadily been expanded due to its versatility
in addressing various formats. However, most studies have targeted
datasets that are limited in quantity and notation complexity, and
they also included specific processing steps that could not be gen-
eralized to other formats. Thus, our objective is to develop a
learning-based model that can cover floor plan vectorization in a
universally applicable way, even targeting complicated floor plans.

Analysis of Complicated Floor Plans

Conversion to a Unified Style via Style Transfer

In order to (1) recognize significant primitives from complicated
and overlapping graphics, and (2) acquire a uniform level of detail
(LOD) from varied types of drawings in EAIS, we transformed the

format of each floor plan into a simple, unified format through a
style transfer technique prior to vectorization (Fig. 2). We designed
our own floor plan format, namely a unified style, that is intended
for style transfer and can integrate and represent diverse types of
drawings.

The unified style was carefully designed considering our objec-
tive to reconstruct room structure and convert floor plans into this
style by means of learning-based generative models. When design-
ing the unified style, we placed a great deal of importance on uniform
LOD and a resemblance to the original notations. We considered the
following factors: usability as indoor information, commonality for
diverse types of drawings, and ease of vectorization. As a result, our
unified style represented walls and openings in a simplified form,
with the primary goal of representing indoor spaces based on the
room unit.

Fig. 3 depicts the features of the unified style by comparing the
wall of the original floor plan and the unified style. In terms of
preventing significant deformation of the walls and preserving
the overall room structure, the floor plan is sufficiently simplified
and abridged. Specifically, in the unified style, spaces that are insig-
nificant in terms of representing the room structure are omitted. The
walls are roughly expressed as trimmed and flattened shapes rather
than with precise geometry, while the openings are expressed by
following the original arc shapes. Due to this expression, even
when starting with complicated floor plans with ambiguous nota-
tional criteria, the unified style can represent rooms intuitively and
clearly and is robustly annotated by distinct annotators in terms of
presenting room structure (Fig. 4).

In order to transfer the styles of the floor plans into designated
styles, we utilized the conditional generative adversarial network
(Isola et al. 2017), which aims to convert input images into a style
of annotation pairs. Ever since Goodfellow et al. (2014) presented
the generative adversarial network, there has been tremendous de-
velopment in generative models and neural style transfer (Gatys
et al. 2015; Jing et al. 2019). Especially notable among various
models for style transfer based on generative adversarial network
(Kim et al. 2017; Zhu et al. 2017), the conditional generative ad-
versarial network has the characteristic of translating images into
the desired style using annotation pairs, and it also has the strength

Fig. 2. (Color) Design process for analyzing complicated floor plans.
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to preserve the underlying structure of the images. These character-
istics align well with our objective of converting floor plans into the
designated style while preserving room structure. A detailed de-
scription of the deep networks used is depicted in the “Extraction
of Preliminary Materials via Multitask Deep Networks” section.

Floor Plan Vectorization via Combinatorial
Optimization

For floor plan vectorization, we essentially borrowed an idea intro-
duced by Liu et al. (2017a), which is a stratified representation that

creates high-level building models through sequential conversion
over low-level geometries. The core of the idea involves combina-
torial optimization that searches for a proper combination of can-
didate wall and junction primitives by assembling the junction and
semantic information extracted using deep learning networks. We
followed their approach because it performed well with simple no-
tation and is compatible with our style transfer using deep learning
networks.

We remodeled the stratified representation to be universally
applicable even for floor plans that are not drawn in detail and
lowered the barrier to utilizing deep networks by mitigating the

Fig. 3. (Color) Comparison of (a) exact geometry of walls; and (b) walls in the unified style.

Fig. 4. Examples of the unified style: (a) floor plans; and (b) corresponding annotations.
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difficulties with annotation. For example, we targeted only objects
that are typically contained in architectural drawings and signifi-
cantly lowered the number of classes in annotation (Table 3). Spe-
cifically, in the case of a junction, instead of the original 21 classes
with orientation, we use five classes that only indicate the degree
of connectivity. I-, L-, T-, and X-type indicate the number of con-
nected wall segments (1–4, respectively), and O-type indicates the
two ends of an opening (Fig. 5).

By reducing the junction classes from 21 to 5, we lost direc-
tional information of junctions and should endure the computation
burden at the combinatorial optimization phase, and in return, we
could obtain practicality at the deep network phase. In detail, this
significantly reduced the annotating labor and had an effect of in-
creasing the number of data per class, requiring less training floor
plan. In addition, the lack of directional information means that a
high degree of freedom is guaranteed at the optimization phase, so
there is room for improvement in the building elements incorrectly
extracted from the deep networks. At the same time, the informa-
tion lost from reduced classes was fully complemented at the opti-
mization phase by reflecting the style-transferred plan into the
optimization formula. As such, we modified the stratified represen-
tation in the direction of practicality and then implemented floor
plan vectorization on our style-transferred plans using combinato-
rial optimization. The programming modifications including a new
objective function and relaxed constraints are depicted in the “Floor
Plan Vectorization via Combinatorial Optimization” section.

Implementation of the Proposed Method

The process designed to analyze complicated floor plans, which are
composed of sequential steps of style transfer and floor plan vecto-
rization, is implemented in two stages: multitask deep networks and
combinatorial optimization (Fig. 6). By deploying multitask deep
networks, we simultaneously achieved both objectives of transfer-
ring the styles of the floor plans and extracting the geometric fea-
tures to be used to generate primitive candidates. Based on these
outputs, a style-transferred plan and the primitive candidates, such
as junctions and walls, we used combinatorial optimization to find
an optimistic primitive combination that represented a structure
that was similar to the style-transferred plan while satisfying the
constraints related to the floor plan layout. Specifically, for each

primitive candidate, a similarity score that compares it to the
style-transferred plan is calculated and used to formulate an objec-
tive function that maximizes the similarity scores. Then, we visu-
alized this final result expressed as an adjacent matrix after simple
postprocessing. In the “Extraction of preliminary materials via
multitask deep networks” section, we address the first stage, multi-
task networks, including network architecture and training tech-
niques. We describe the detailed configuration of the combinatorial
optimization in the “Floor Plan Vectorization via Combinatorial
Optimization” section.

Extraction of Preliminary Materials via Multitask
Deep Networks

By default, the junction annotations were worked on in the unified
style, a concise version of the plans. In other words, in the anno-
tation phase, junction extraction proceeded sequentially after the
floor plan was converted to the unified style. However, in the phase
of deep network training, our designed networks provided both
outputs simultaneously through end-to-end training. In this manner,
the deep networks could complementarily improve the perfor-
mance of the style transfer and junction extraction while also
significantly reducing redundant computations used to extract low-
level features from the floor plans.

We utilized multitask deep learning networks to perform the fol-
lowing tasks: (1) style transfer that converts the formats of the floor
plans into a unified style, and (2) extraction of junction features that
indicate the position and type of each junction in the form of a heat-
map. To this end, we constituted a network structure by fusing the
conditional generative adversarial networks (Isola et al. 2017) with
the junction-layer conversion from (Liu et al. 2017a). Both outputs
were used as preliminary materials for subsequent vectorization.

The overall architecture of the deep networks is illustrated in
Fig. 7. From the perspective of conditional generative adversarial
networks, the generator is extended to output additional junction
maps in parallel, while from the perspective of the stratified floor
plan representation, the per-pixel room classification is substituted
into the style-transferred plan. The frame of the networks is based
on each source, but the generator, which is present on both sides,
follows the junction layer, which is suitable for intricate tasks due
to the existence of deeper layers. In detail, the generator network is
based on ResNet (He et al. 2016) and is modified in a direction that
raises the resolution of the output (Bulat and Tzimiropoulos 2016)
(Fig. 8). The ensuing scoring layers at the back are stacked in the
proper forms for each purpose (integrated style and junction maps).
As for the discriminator, the convolutional patch generative adver-
sarial networks classifier is used, and the required parameters such
as patch size are borrowed from Isola et al. (2017).

To optimize the combined networks for different purposes, the
objectives of converting to the integrated style and creating junction
maps are numerically compiled. When training the style transfer

Table 3. Comparison of the number of annotation classes between Liu
et al. (2017a) and the present method

Annotations Liu et al. (2017a) Present method

Junction 21 types 5 types (I, L, T, X, O)
Object 22 types

(12 rooms + 10 icons)
3 types
(wall, opening, background)

Fig. 5. (Color) Annotation of junction types.

Fig. 6. (Color) Proposed process.
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alone, the objective of the minimax problem is solved by alternat-
ing each gradient descent step of the divided max and min prob-
lems. For conversion to the junction map, an objective of the
regression is minimizing pixel-wise sigmoid cross-entropy loss.
We assembled the minimization part of the two objectives while
updating only the weights in relevant layers. Overall, like a fractal
structure, when each learning step for the style transfer trains in
turn, the minimization problem is also subdivided into two alter-
nating steps. Thus, the generator, instead of being updated, just
fools the discriminator, and it additionally reflects the loss for
the junction maps.

The training detail is as follows. The pixel size of the input and
output is fixed at 256 × 256. The input images are resized to this
resolution while maintaining their aspect ratio, which includes the
core importance of the floor plan, and then for data augmentation,
techniques like random cropping, random rotation in 90-degree
units, and random flip are carried out. We carried out the same
process on the corresponding junction maps. When training was
complete, the results from the deep learning networks were both

the style-transferred plan as a raster image and the junction maps
as stacked heat maps. These are delivered to the next section.

Floor Plan Vectorization via Combinatorial
Optimization

By means of integer programming, we assembled intermediate
products generated by the deep networks. Each product is incom-
plete to embody the vector structure, and the products comple-
mented each other to construct the building models of the floor
plan. Specifically, we built primitive candidates of the walls and
openings from the junction maps and then spotted a correct subset
of them while referring to the style-transferred plans. To arrive at
the optimal solution of the integer programming, we used a Gurobi
solution, which took under 3 s even for a case that had the most
candidates in EAIS.

Candidate Generation
We first set a global threshold to determine alignment. Uncertain-
ties of the exact locations of the junctions accumulate from human
error in annotation. We assigned five pixels (from a 273 × 273 im-
age) to the tolerances for this type of error, which is half the size
used in Liu et al. (2017a), in order to elaborate the complicated
structure of the EAIS data. For instance, we considered the junc-
tions within the global threshold to be overlapping, and we re-
garded the primitives made by the junctions aligned within the
threshold as being parallel to the axial direction.

Prior to generating the candidates, we transformed the junction
maps into a junction set that contained pixel coordinates and a class
for each junction (Fig. 9). To convert the heat maps to point sets, we
applied nonmaximum suppression that left only the highest prob-
ability output in the neighborhood. Based on the junction set, can-
didates for the wall and opening primitives are generated when their
potential existence is qualified in the style-transferred floor plan. In
detail, each primitive can be formed by two junctions when the
nearby pixels of the generated primitive are primarily classified
as the corresponding class in the style-transferred floor plans.

Integer Programming
We borrowed the base frame of integer programming from Liu et al.
(2017a) but adjusted it to apply to the style-transferred plan. The
overall details of the variables, an objective function, and the con-
straints are given in Fig. 10.

Fig. 7. (Color) Overall network architecture.

Fig. 8. (Color) Architecture of the generator; note that the shaded parts
are modifications from the original ResNet-152 to improve the resolu-
tion of the output.
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The variables are confined to walls and openings, and binary
indicators of the junctions and primitives are defined for each. For
instance, ‘1’ indicates the presence of a junction, and ‘0’ indicates
the absence of a junction. Since our combinatorial optimization
faithfully adheres to the basic conversion of the style-transferred
plan into a vector format as it was originally shaped, the objective
function is formulated to retrieve the indoor structure, similar to the
style-transferred plan, while using the junctions extracted from
deep networks as much as possible. Specifically, the objective
function is to maximize the linear combination of all variables.

The weights of the junctions are a degree of connected primitives
that allow as many intersecting primitives as possible to be used
to concisely express the floor plan; the same structure can be ex-
pressed in fewer junctions. The weights of the primitives include a
similarity score that allows a comparison with the style-transferred
plan, quantified by the proportion of classified pixels within the
global threshold. Note that this similarity score is newly calculated
for the combinatorial optimization and is not relevant to the loss
used for updating styles in multitask deep networks.

The constraints are as follows. (1) The loop constraint is con-
fined to closures at the whole building level, instead of rooms, be-
cause we only had wall information, and in order to keep buildings
closed, there must be more junctions than walls. (2) The connec-
tivity constraint controls the compatibility between the junctions
and the primitives in the same way as one-hot encoding. When
a junction does not exist, the primitives connected to it must not
exist either. In addition, each junction must be connected to a cer-
tain number of primitives corresponding to its classes. (3) The mu-
tual exclusion constraint prevents overlapping geometry, so the
junctions or primitives that are spatially close within the global
threshold cannot be chosen at the same time. (4) The opening con-
straint enforces that openings can be selected only when wall prim-
itives are close.

After solving for the integer programming, we took the solution
that indicated the floor plan structure through a combination of
junctions and primitives. Then, we conducted postprocessing for
good alignment of the walls and openings. We gathered the

Fig. 10. Details of variables, objective function, and constraints.

Fig. 9. (Color) Generation of junction candidates: (a) junction heat-
maps; and (b) visualized junction candidates superimposed on the
style-transferred plan. The legend shows the color used for each junc-
tion type.

© ASCE 04020066-8 J. Comput. Civ. Eng.

 J. Comput. Civ. Eng., 2021, 35(2): 04020066 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

SE
O

U
L

 N
A

T
IO

N
A

L
 U

N
IV

E
R

SI
T

Y
 L

IB
 o

n 
12

/1
7/

20
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



junctions in a straight line by searching for connected walls that
were not regarded as diagonal, and we adjusted their position to
the average location. We also moved the openings to stick to the
closest walls. Eventually, we constructed building models that rep-
resented the integrated style in a vector format.

Evaluation

Floor Plan Dataset

Since our objective is to recognize room structure from complicated
formats, we targeted the EAIS dataset (Jang et al. 2020). Compared
with other datasets, such as CVC, Rakuten, and Rent3D, which are
typically composed of abridged versions of plans, EAIS contains
various types of architectural drawings characterized by compli-
cated and fuzzy styles. To be specific, the walls in EAIS floor plans
are expressed in nonuniform patterns, and the boundaries are un-
clear due to overlapping graphics and noise (Fig. 4). To the EAIS
dataset, in addition to the 319 original floor plans, we added images
until there were 450 from the same data source (Jang et al. 2020) to

increase quantity and format diversity. We manually annotated the
floor plans ourselves because we proposed a new annotation,
namely the unified style. To train-test the split ratio, we split our
updated EAIS data into 400 images for training and 50 images for
testing while keeping diverse types evenly distributed. The test im-
ages were newly selected because there is no test set used on EAIS
data to evaluate the vector results.

In addition, we utilize BlackSet in CVC as a reference dataset
since it has been widely used in conventional fields. BlackSet con-
sisting of abridged architectural drawings in a single and simple
format has a clear and consistent notation expressing the wall with
black thick lines. Compared to EAIS in the analysis of the floor
plan, building elements could be easily detected and recognized
in BlackSet (no format diversity; no overlaid graphic; no ambigu-
ous expression; see Table 1).

Quantitative Evaluations

The evaluations of the floor plan analysis were dominantly per-
formed through a wall segmentation task or a room-detection task
(de las Heras et al. 2015). In this paper, we assessed the results of
both the style-transferred plan and the vectorized floor plan by
means of a room-detection task since our goal was to reconstruct
indoor structures based on the room unit. On the other hand, the
wall segmentation task, which includes a pixel-wise evaluation of
geometric walls based on the Jaccard index (Everingham et al.
2010), was inappropriate in our case because our raster results,
the style-transferred plan, targeted a unified style that represented
walls in a simplified expression, not with a precise geometry. More-
over, fundamentally for floor plan analysis, good performance in
segmentation tasks did not guarantee good vector results. Thus,
provided that we assessed the final result of the vectorized floor
plan, it was trivial to evaluate the raster results, which were inter-
mediate products used for vectorization.

Table 4. Evaluation of the room-detection task. Ours and Ours* indicate
the results of the style-transferred plan and the vectorized floor plan,
respectively

Metrics

EAIS CVC (BlackSet)

Ours Ours*
(de las Heras
et al. 2014)

DR (%) 88.37 87.87 94.76
RA (%) 90.90 89.96 94.26
One to one rate (%) 80.89 81.32 57.68
One to many count 0.26 0.28 1.34
Many to one count 0.5 0.48 2.24

Fig. 11. (Color) Visual comparison of outputs produced by our method (b–d) and by Jang et al. (2020) (e–g); annotation, raster result, and vector
result, repectively. [Images in (f) and (g) adapted from Jang et al. 2020.]
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Fig. 12. (Color) Results of our method for various types of complex floor plans in EAIS. (a–c) An input floor plan, our vectorized floor plan, and
the corresponding 3D model. In the vectorized floor plan, the walls and openings are represented by lines, respectively. The legend for the junction
colors is shown in Fig. 9.
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The evaluation protocol for the room-detection task resulted in a
detection rate (DR) and recognition accuracy (RA) based on the
match-score table (Phillips and Chhabra 1999), which was charac-
terized by reflecting the exact matches (one to one) as well as the
partial matches (one to many and many to one). Calculation of the
DR and RA with respect to the room-detection task were detailed
by de las Heras et al. (2014). The predicted rooms for each raster
and vector results were regarded as connected components and
closed polygons, respectively, and the corresponding ground truth
was prepared. When calculating the match-scores of the predicted
room and ground truth, the acceptance and rejection thresholds that
were used to determine whether each pair matched were 0.5 and
0.1, respectively, which were the same as those used previously
for CVC data (Macé et al. 2010; Ahmed et al. 2011; de las Heras
et al. 2014).

Table 4 shows an evaluation of the room-detection task for our
proposed method using EAIS data. The evaluation of the style-
transferred plan (ours) and vectorized floor plans (ours*) is nearly
identical, showing that the room structure retrieved in our raster
results is well-conveyed to the vector results. See Figs. 11(c and d)
to compare both results.

There is no relevant research that could be used for a direct com-
parison, as handling a complicated floor plan has rarely been
covered in floor plan analysis. Also, there is no shared annotation
for complicated floor plan datasets, which are fundamental barriers
for learning-based approaches to compare each other. Even so, to
verify our performance, we refer to the room-detection task on
CVC and use it as baseline performance, which has been updated
over the years in the conventional field of floor plan analysis. Com-
pared with de las Heras et al. (2014) on CVC data, our method shows

Fig. 13. (Color) Examples of our results using challenging graphics: (a) walls with irregular patterns; (b) opening with overlapping notations; and
(c) opening not detected as neat arc shapes.
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slightly lower performance in terms of DR and RA (5%–6%), de-
spite targeting complicated floor plans. Besides, ours significantly
improves the number of exact matches (one-to-one rate), demonstrat-
ing its superiority in terms of constructing an indoor structure with-
out particular postprocessing steps, such as merging and splitting
predicted rooms.

Qualitative Comparison

We compared our method with that in (Jang et al. 2020), which
targeted EAIS data. Although Jang et al. (2020) performed vecto-
rization of the floor plan, they evaluated only the segmentation task
quantitatively while showing only a few examples of the vector re-
sults. Thus, we included their examples in our test images and com-
pared the overall outputs qualitatively (Fig. 11).

First, comparing the raster results [Figs. 11(c and f)] shows that
our style transfer is superior to the approach based on segmentation
in terms of extracting walls in the form of neat and straight lines
with clear boundaries. When the format of the floor plan is com-
plicated and there are symbols similar to those that indicate walls,
the approach based on segmentation naturally offers reduced per-
formance, whereas our method still robustly generates the room
layouts, preserving the basic expression of the unified style. This
robustness is due to our deep learning networks being trained while
paying attention to style-loss, and it is much more noticeable when
applied to various complex floor plans (Fig. 12).

Figs. 11(d and g) show the vectorized floor plans from each
study. Jang et al. (2020) dealt with vectorization separately from
segmentation, so we can see that performance decreases when con-
verting the raster to a vector. However, in our method, the raster
outputs from the deep networks already reflect the simplification
steps, so we can convert the shape of the raster to the vector almost
as is without losing the room structure. Also, while the vector re-
sults in Fig. 11(g) have several slight problems, such as uneven
walls and meaningless closed spaces, our method neatly vectorizes
the floor plan by means of the constraints in the optimization.

Discussion

More results of applying our method to various types of complex
drawings are available in Fig. 12. To intuitively visualize our room
structure results, we generated 3D representations of the building
models using our vectorized floor plans. Under each example, we
display statistics about the correctness of each junction, opening,
and room estimation. The notation shows the total count of an exact
match/ground truth/prediction.

To highlight the advantages of using our method, we cropped
and zoomed in on the results, especially for graphics that were con-
sidered challenging for floor plan recognition (Fig. 13). Fig. 13(a)
indicates walls with messy and irregular patterns and Figs. 13(b
and c) indicate openings with overlapping notation. Our method
based on style transfer is characterized by the production of an out-
put that preserves the overall shape of the layout, thus showing
good performance even with complicated graphics. Moreover, even
when the deep networks failed to detect an opening as an intact arc-
shape due to ambiguous graphics, the corresponding opening junc-
tions could still be detected, so that this missing information could
be supplemented in the vectorization step [Fig. 13(c)].

By processing floor plans from other data sources, we verified
that our model could be generalized and applied to the new formats
that were not used for training. Fig. 14 shows our results of the
style-transferred plans for the four formats of CVC. Except for very
distinctive styles different from the format samples of EAIS, our
model retrieved the overall structure of the interior, although it

did not detect all the detailed walls. Unfortunately, since BlackSet,
which accounts for over 75% of CVC, cannot be covered by our
trained model through EAIS, direct quantitative comparisons have
been difficult to perform fairly (Our model detects the outer wall of
BlackSet well, which is expressed similarly to other drawings,
while it is difficult to distinguish the inner wall that uses the unique
notation of the BlackSet). Still, such generalized application sug-
gests that floorplan analysis can be performed through learning
drawings of similar styles, not exactly the same format, especially
when the restoration of the entire indoor structure is prioritized.

Finally, we discuss some limitations that make it difficult for our
results to be used directly as indoor information. In some situations,
topological information is not fully reconstructed when generating
building models. As it is dependent on learning, our method implic-
itly performs a simplification of the layouts, which means that

Fig. 14. Results on the four formats of CVC. For the cases of BlackSet
with distinctive wall notation and TexturedSet2 containing two build-
ings at once, the performance is rather low.
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omission or closing of the rooms can occur. For example, rooms
without openings are generated at times, yielding an incomplete top-
ology for building models. To address this issue, we believe there is
room for improvement in the method itself. After coarse recognition
of the room structure, connectivity between rooms can be obtained
by taking advantage of locally available information and of contex-
tual knowledge in order to reconstruct intact building models.

In addition, the method is presently limited to addressing layouts
within the Manhattan assumption, although it could be extended to
those that include diagonal walls. We present results only including
walls with axial directionality since there is not enough variation in
type and quantity in the EAIS dataset to train deep networks on
diagonal walls. However, the vectorization based on our junction
types that are not relevant to wall orientations could be directly
adapted to diagonal layouts.

Conclusion

This paper proposes a novel method of recognizing floor plan el-
ements to address various types of complex formats. Our method
results in a vectorized floor plan that can be used to generate indoor
models, including CityGML and IndoorGML. There are three key
contributions of this work. First, we significantly extend the cover-
age of floor plan analysis into complex cases with a new approach
based on style transfer. Second, we enable the vectorization of floor
plans via deep learning models by designing a multitask network
that performs style transfer and junction extraction. Third, we in-
troduced a new annotation, namely the unified style, that robustly
represents room structure, even from diverse and complicated floor
plans. Also, the unified style makes labeling tasks much easier, thus
allowing for deep networks to be applied to floor plans practically.
In the end, we evaluate our method using the EAIS dataset. The
results show the superiority of our method in terms of room-
detection tasks, especially when targeting irregular patterns or over-
lapping graphics. In the future, we plan to add connectivity between
rooms in our vector results so that more complete indoor informa-
tion can be generated in terms of topology.
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